Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 9Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- HW3 posted on the course web site
- Chapter 4: 5(b,d), 26b, 30b, 32a, 34a, 44
- Write down all the steps that you have done to obtain your answers.
- Due date: July 9, 2009 (Thursday)
- Today
- Use handout from lecture 8 first.
- The new handout is for Chapter 5 (except the first few slides).

Caution

When you see $\bar{A} \bar{B} C$ or $\bar{A} \bar{B} \bar{C}$ on quiz/HW/exam, please always double-check whether the bars on the top are disconnected.

This is the K-map for
$X=\bar{A} \bar{B} \bar{C}$ which is the same as $X=\bar{A} \cdot \bar{B} \cdot \bar{C}$

This is the K-map for $X=\overline{A B C}$ which is equivalent to
$X=\bar{A}+\bar{B}+\bar{C}$

Example

Use a K-map to minimize the following expression $X=A \bar{B} C+\bar{A} B C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}$

Non-uniqueness

Use a K-map to minimize the following expression

$$
A B+\bar{A} \bar{B}+\bar{A} B C
$$

Solution 1:AB+ $\bar{A} \bar{B}+\bar{A} C$
Solution $2: A B+\overline{A B}+B C$

"Don't Care" Input Combinations

- Sometimes the output doesn't matter for certain input combinations.
- For example, the combinations are not allowed in the first place.
- These combinations are called "don't care".
- The "don't care" term can be used to advantage on K-map.
- For each "don't care" term, place an X in the corresponding cell.
- When grouping the 1 s ,
- the Xs can be treated as 1s to make a larger grouping
- or as 0 s if they cannot be used to advantage.

Example

INPUTS				OUTPUT
A	B	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

(a) Truth table

(b) Without "don't cares" $Y=A \bar{B} \bar{C}+\bar{A} B C D$ With "don't cares" $Y=A+B C D$

Alternative Methods

- Disadvantages of using K-maps
- Not applicable for more than five variables
- Practical only for up to four variables
- Difficult to automated in a computer program
- There are other ways to minimize Boolean functions.
- More practical for more than four variables
- Easily implemented with a computer

1. Quine-McClusky method

- Inefficient in terms of processing time and memory usage

2. Espresso Algorithm

- de facto standard

New Perspective: 0

- So far, all of our techniques focus on the 1 s in the truth tables/K-maps.
- We can look at the 0s as well.

Caution: From this perspective, you are in a different world. In fact, it is a dual world. Techniques used here will be the dual of what we used before.

Canonical Product

- Product-of-Sums (POS) Form

Example: $(A+\bar{B}) \cdot(A+B+C)$

- Standard POS Form (Canonical Product)

Example: $(A+\bar{B}+C) \cdot(A+\bar{B}+\bar{C}) \cdot(A+B+C)$

- Convert expression in POS form into canonical product:

Hint:

$$
\begin{aligned}
X & =X+0 \\
& =X+Y \cdot \bar{Y} \\
& =(X+Y) \cdot(X+\bar{Y})
\end{aligned}
$$

Truth Table for Canonical Product

Find the value of X for all possible values of the variables when

$$
X=(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C)
$$

Old way: Convert to SOP form

$$
\begin{aligned}
X & =(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C) \\
& =((A+\bar{B}) \cdot(\bar{A}+B) \cdot(\bar{A}+\bar{B}))+C \\
& =((A+\bar{B}) \cdot(\bar{A}+(B \cdot \bar{B})))+C \\
& =((A+\bar{B}) \cdot \bar{A})+C \\
& =(\bar{A} \cdot \bar{B})+C
\end{aligned}
$$

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Then, construct the truth table.
We can use the property of sum terms to construct the truth table directly.

Maxterm

- A sumterm in a canonical product is called a maxterm.
- A maxterm is equal to 0 for only one combination of variable values.

$$
\begin{aligned}
& A+\bar{B}+C=0 \text { iff }(A, B, C)=(0,1,0) \\
& A+\bar{B}+\bar{C}=0 \text { iff }(A, B, C)=(0,1,1) \\
& A+B+C=0 \text { iff }(A, B, C)=(0,0,0)
\end{aligned}
$$

- We say that the maxterm $A+\bar{B}+C$ has a binary value of 010 (decimal 2)
- Maxterm list: $(A+\bar{B}) \cdot(A+B+C)=\prod_{A, B, C}(0,2,3)$ because

$$
(A+\bar{B}) \cdot(A+B+C)=(A+\bar{B}+C) \cdot(A+\bar{B}+\bar{C}) \cdot(A+B+C)
$$

Truth Table for Canonical Product

Find the value of X for all possible values of the variables when

$$
X=(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C)
$$

New way:

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Minterm/Maxterm \& Truth Table

Row \#	A	B	C	Minterm	Maxterm
0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	$A+B+C$
1	0	0	1	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$
2	0	1	0	$\bar{A} \cdot B \cdot \bar{C}$	$A+\bar{B}+C$
3	0	1	1	$\bar{A} \cdot B \cdot C$	$A+\bar{B}+\bar{C}$
4	1	0	0	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A}+B+C$
5	1	0	1	$A \cdot \bar{B} \cdot C$	$\bar{A}+B+\bar{C}$
6	1	1	0	$A \cdot B \cdot \bar{C}$	$\bar{A}+\bar{B}+C$
7	1	1	1	$A \cdot B \cdot C$	$\bar{A}+\bar{B}+\bar{C}$

In the same way that each minterm corresponds to a unique row of the truth table,
each maxterm corresponds to a unique row of the truth table (in a dual way).

> "1" "0"

Conversion

	Row \#	A	B	c	Minterm	Maxterm	
	0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	$A+B+C$	
	1	0	0	1	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$	
	2	0	1	0	$\bar{A} \cdot B \cdot \bar{C}$	$A+\bar{B}+C$	
	3	0	1	1	$\bar{A} \cdot B \cdot C$	$A+\bar{B}+\bar{C}$	
This tells that the output column of the truth table is 1 on row \# $0,1,2$, 3.	4	1	0	0	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A}+B+C$	This tells that the output column of the truth table is 0 on row \# 4, 5, 6, 7.
	5	1	0	1	$A \cdot \bar{B} \cdot C$	$\bar{A}+B+\bar{C}$	
	6	1	1	0	$A \cdot B \cdot \bar{C}$	$\bar{A}+\bar{B}+C$	
	7	1	1	1	$A \cdot B \cdot C$	$\bar{A}+\bar{B}+\bar{C}$	

K-Map POS Minimization

- Goal: Find the "Minimal Product"
- Appendix B in the textbook.
- For a POS expression in standard form, a 0 is placed on the K-map for each sumterm in the expression.
- The cells that do not have a 0 are the cells for which the expression is 1 .
- Group 0s to produce instead of grouping 1s.

Combinational Logic

- Chapter 5 and 6
- Reading Assignment:
- Read Section 5-1 to 5-5.
- Definition: A combinational logic is a combination of logic gates interconnected to produce a specified Boolean function with no storage or memory capability.
- Sometimes called combinatorial logic.

SOP Implementation: AND-OR Circuit

In Sum-of-Products (SOP) form, basic combinational circuits can be directly implemented with AND-OR combinations: first forming the AND terms; then the terms are ORed together.

This is called the AND-OR configuration.

Example

Write the output expression of the following circuit as it appears in the figure and then change it to an equivalent ANDOR configuration.

Solution:

$$
\begin{aligned}
X & =(A+B) \cdot(C+D) \\
& =(A+B) \cdot C+(A+B) \cdot D \\
& =A C+B C+A D+B D
\end{aligned}
$$

Example

Write the output expression of the following circuit as it appears in the figure and then change it to an equivalent ANDOR configuration.

Solution

$$
\begin{aligned}
X & =\overline{\overline{\overline{(\overline{\bar{A}+B}}) \cdot(\overline{B \cdot C})}+D} \\
& =\overline{\overline{\overline{\bar{A}+B}}) \cdot(\overline{B \cdot C})}+D \\
& =\bar{A}+B+B \cdot C+D
\end{aligned}
$$

Remark

1. From any logic expression, you can construct a truth table.
2. From the truth table you can get a canonical sum or a minterm list. (This can be simplified to a minimal sum. In any case, you get a SOP expression)
3. Any SOP expression can be implemented using AND gates, OR gates, and inverters.

AND-OR-Invert (AOI) circuit

When the output of a SOP form is inverted, the circuit is called an AND-OR-Invert circuit.

The AOI configuration lends itself to product-of-sums (POS) implementation.

Universal gate

- The term universal refers to a property of a gate that permits any logic function to be implemented by that gate or by a combination of gates of that kind.
- Example: NAND gates, NOR gates

NAND Gate as a Universal Gate

NAND gates are sometimes called universal gates because they can be used to produce the other basic Boolean functions.

OR gate

NOR gate

Example

Implement the following logic circuit using only NAND gates:

Solution:
Negative-OR \equiv NAND

Example

Implement the following logic circuit using only NAND gates:

Solution:

NOR Gate as a Universal Gate

NOR gates are also universal gates and can form all of the basic gates.

AND gate

OR gate

NAND gate

Example

Implement the following logic circuit using only NOR gates:

Solution:

